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Abstract 

Currently, the only viable means of providing power and maintaining human con­

trol during underwater Remotely Operated Vehicle (ROV) operation is through the 

vehicle's tether. Due to the high cost of ROVs and their tethers, as well as potential 

risks to equipment and personnel, a realistic simulator is needed to train their pilots. 

To accurately simulate the tether, it is important to detect collisions of the tether 

with the environment and with itself, as well as to calculate the forces involved dur­

ing such contact. The aim of this work is to present a computationally efficient and 

accurate method of detecting tether self-contact and determine the contact forces. To 

this end, a combinatorial global optimisation method is first used to determine the 

approximate separation distances. Then, a local optimisation scheme is used to find 

the exact separation distance and the location of the closest points. This information 

can then be used to determine whether or not a collision has occurred. If a collision is 

detected, a force needs to be calculated and applied at the collision site to maintain 

separation. 

In this work, a contact model for cylindrical tethers based on interference volume is 

described. The model is theoretically analogous to a Wrinkler foundation model with 

damping. The model is successfully compared to Hertzian theory for general contact 

to ensure fidelity. This model, coupled with a frictional model that exhibits stick/slip 

transitions, Stribeck effect, dwell-time dynamics of sticking and viscous friction is 

used in a tether simulation. The model is coupled to a lumped-mass model of slack 

flexible tethers and has shown to be effective at providing forces and maintaining 

tether separation during tether self-contact simulations. 
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Chapter 1 

Introduction 

1.1 Motivation 

Tethered systems are used in many applications, most notably in underwater explo­

ration. In the operation of such systems, especially for underwater Remotely Operated 

Vehicle (ROV) operations, it is critical that human operators remain in the control 

loop. Currently, the only viable means of maintaining human control during under­

water ROV operation is through the vehicle's tether, which also provides power and 

communications to and from the system. Due to the high cost of ROVs and their 

tethers, as well as the risks involved in their operation in the ocean, computer simula­

tions are required for the training of pilots. Since the tethers have a dominant effect 

on the dynamics of an ROV system [2, 3], it is imperative that the forces applied to 

the tether are taken into account within the simulations. These include contact forces 

due to contact of the tether with the environment or with itself (i.e., self-collision, 

see Figure 1.1). The tethered-system simulator being developed at the University of 

Victoria and the University of New Brunswick currently lacks this capability. 
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Figure 1.1. Examples of contacting tethers (contacting portions highlighted): a) 

tether-tether contact, b) tether-environment contact. 

This is the chief motivation for extending the tether model to include a collision 

detection method as well as a contact dynamics model. 

lo2 Literature Review 

In the computer simulations of multi-body systems, it is often important to simulate 

the interactions of two or more objects that are in contact with each other. Contact 

dynamics simulations are important to a variety of fields such as haptics [4, 5], robotics 

simulations [6], Computer Graphics [7, 8], as well as vehicle crash simulations [9]. In 

such computer simulations, two problems arise which must be addressed: a) detecting 

collisions, and b) determining the forces involved so as to evaluate the objects' dy­

namics. Because these two problems are so fundamentally different from each other, 

they are generally regarded as two different problems that are co-dependent in solving 

the greater problem of simulating contacting objects. To calculate the reactions of 

2 
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two objects in collision, these collisions must first be detected. 

In reality, forces are generated between objects at the collision interface by their 

deformations, which keeps them separated. In computer simulations, a contact dy­

namics model describes how objects interact with each other during a collision. 

1.2.1 Collision Detection 

In general terms, in computer simulations, collisions are said to occur when any part 

of an object simultaneously shares the same space as part of another object. Many 

different ways of detecting collisions have been used and proposed. In situations 

where there are iV0 objects in a scene that must be checked for collisions, verifying 

whether each object is in contact with every other one would require on the order of 

N% or more accurately (2 °) collision checks or queries. This means that increasing the 

number of objects in the scene quadratically increases the number of collision checks 

required. This, in turn, quadratically increases the computational time required to 

process the scene. Therefore, as the complexity of a scene is increased, the simulation 

becomes bogged down quite rapidly. 

In order to achieve fluid motion in a real-time computer simulation, such as a 

video-game, a frame must be rendered in less than ^ s in order to achieve 25 frames 

per second (FPS) where 60 FPS is considered to be ideal for maximum perceivable 

fluidity of motion [10]. In haptic simulations, the emphasis on speed is even stronger 

as update rates of about 1 kHz can be required [4, 11]. 

To lighten some of the computational burden imposed by the collision detection 

systems, these algorithms generally employ spatial approximations (e.g., Bounding 

Volumes), partitioning schemes as well as temporal strategies, where intersection 

3 
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Figure 1.2. A simulation environment with 8 objects where the space is a) 

unpartitioned b) partitioned into two groups and c) partitioned into four groups. 

checks are only performed when a collision is imminent [11, 12]. These methods, 

often referred to as pruning strategies, can lighten the computational load enough to 

allow for their use in some real-time applications [10]. 

To reduce the number of object pairs to be checked for collision, people have 

resorted to spatial partitioning techniques to determine which groups of objects are 

definitely not in contact with which other groups of objects. For instance, dividing 

the objects into two groups of N0/2 objects each, where it is known that none of the 

objects from one group are in contact with the objects from the other group, will 

reduce the number of collision checks at least by half (Figure 1.2). 

There exists a multitude of spatial partitioning schemes [10, 11, 12] such as di­

viding the space into grids, bounding volume hierarchies (BVH) and trees (octrees, 

k-d trees, BSP-trees), etc. Each of these methods attempts to reduce the number of 
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Figure 1.3. Examples of different space partitioning methods: a) uniform grids b) 

k-d tree c) binary space partitioning tree d) bounding volume hierarchy 

collision checks by separating the objects in spatial compartments (Figure 1.3). 

Bounding Volumes can be used to either approximate more complex objects or 

decompose them into simpler pieces [11]. This reduces the complexity of the collision 

checks but does not reduce the number of collision queries that must be performed. 

To do this, the bounding volumes are placed in a bounding volume hierarchy where 

collision checks between hierarchies generally need only run through the first few 

layers of the hierarchy if there is not collision. For instance, using the example in 

Figure 1.4, the first check is to see if the bounding boxes represented by solid lines 

are interfering. Since they are not, only the dotted lined bounding boxes of object 

A are checked for interference and similarly object B's boxes but no check is made 

of the objects within A to those within B. This required a total of 3 collision checks 

instead of (|) or 6 checks if all four objects had to be checked. The savings can be 

even more dramatic for larger collections of objects. 

There are a few different bounding volumes available and each have their own 

advantages and disadvantages but all have the same objectives: "provide inexpensive 

intersection tests, fit tightly around the objects they are bounding, can be efficiently 

5 
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a) b) 

B 

Level 

I 

II 

III 

Figure 1.4. A similar bounding volume hierarchy example as Figure 1.3d and its 

tree representation. 

created, easily transformed, and exhibit a small memory footprint" [10]. Some of 

the bounding volume types available include: spheres, axis-aligned bounding boxes 

(AABB), object aligned bounding boxes (OBB), Convex Hulls, and 8-DOPs (discrete 

oriented polytope) [10]. Convex objects, which are also useful bounding boxes, are 

particularly well suited for collision detection as there always exists a separating plane 

between two non-intersecting convex objects. As a result, concave objects tend to be 

broken down into smaller convex pieces. This allows for easy partitioning and efficient 

collision checks. 

These bounding volume hierarchies can also be extended to deal with deformable 

object collisions and self-collisions [7]. However, their efficiency should be carefully 

investigated as hierarchy updates would be frequently required [7]. 

Recently, the graphical processing unit (GPU) has been used to detect colli­

sions [13] and has been shown to even handle deformable and concave models [14]. 

Because such image-based methods are tested to the resolution of the buffers to which 
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the objects are rendered, such methods are generally approximate [10]. 

As computer simulations are discrete in nature, detecting collisions that occur in 

between time steps, and that are not in collision during a time step is not covered 

by the previously-mentioned methods. This effect is often called tunneling [10]. To 

solve the logistics of this, methods such as the use of swept volumes [10, 11, 15], have 

been introduced to handle continuous collision detection. 

1.2.2 The Minimum Separation Distance 

It is sometimes important in computer simulations to know how far an object is from 

other objects in the scene. There are a few reasons why the minimum separation 

distance could be important: a) in path planning it is necessary to determine how 

close the objects are to the environment and b) for collision detection or collision 

prediction algorithms [11]. 

Separation distance algorithms can be separated into two categories: optimisation-

based and geometrically-based [11]. Both can also be separated again into two other 

categories: convex and concave methods. 

The use of optimisation-based methods to find the minimum separation distance 

was first introduced in [16] and extended to find the interference distance in [17]. 

These methods treat the minimum separation distance as a function to be minimised, 

subject to constraints representing the bounds of the objects. However, these methods 

only handle convex polyhedra or quadratically-bound convex objects [18]. 

Geometrical methods, on the other hand, try to solve the minimum separation 

distance using geometrical properties of the objects. The GJK algorithm for in­

stance, first proposed in [19], uses the Minkowski difference of two convex polytopes 

7 
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to compute the minimum separation distance. Another such algorithm is the V-Clip 

algorithm [20], which makes use of Voronoi regions to determine the closest features 

between two convex objects from which the minimum separation distance can easily 

be found. Both of these are confined to convex objects or a concave object represented 

as the union of two or more convex objects. 

Most distance determination algorithms deal with purely convex objects, so, in 

order to determine the separation distance of concave objects, they must first be de­

composed into convex sub-objects [11]. In addition to generating additional fictitious 

object features, this uses more memory and requires pre-processing. The more convex 

subobjects that are generated to represent the concave object, the more separation 

distance checks must be processed [11]. That being said, obtaining the minimum 

separation distance between convex objects is a simple problem as there is always a 

single solution that can easily be found using the methods mentioned earlier. 

Some optimisation methods have been developed to handle non-partitioned con­

cave objects. For example, the algorithms proposed in [21] and [22] used genetic 

or simulated annealing algorithms to find the approximate minimum separation dis­

tance. The algorithm in [22] was later extended to find the exact minimum separation 

distance in [23]. 

1.2.3 Contact Dynamics 

After a collision is detected, a model to calculate the contact forces is to be used to 

determine the forces involved. For increased fidelity of the contact model, forces that 

are both normal and tangent (i.e., friction) to the contact plane should be taken into 

consideration. 

8 
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Normal Force Models 

Normal force contact dynamics models can be categorised as either discrete or contin­

uous models [17, 24]. Discrete methods assume that contact is instantaneous. They 

are an attempt at modelling the result of a collision rather than the collision itself. 

The most well-known discrete contact models are arguably the Newtonian impulse-

momentum models or coefficient of restitution models [24]. Discrete models cannot 

be easily extended to multi-body contacts, moreover, the inclusion of friction for these 

models might violate energy conservation principles [17]. 

On the other hand, continuous/compliant models integrate contact forces over 

time. This allows contacting objects to "deform" under pressure as is the case in real 

contact situations. The three main continuous contact models are: Hertzian Con­

tact, spring-dashpot methods and finite element methods [17]. The Hertzian contact 

model [25], based on elasto-static theory, is limited to elastic deformation of smooth 

objects where there would be a common surface normal vector between any possi­

ble contact interfaces [17]. For cases where the simulated objects are represented by 

polygonal objects, the contacting surfaces are rarely smooth (unless the polygonal 

surfaces are highly refined). As a result, the Hertzian model is ill-suited for these 

cases. In some computer simulations, modelling pressure deformations may not be 

worthwhile due to the high computational cost associated in computing the defor­

mation within the contact region which can be done using a finite element method. 

Fortunately, it can generally be assumed that the interfering geometry is a good ap­

proximation for the deformations involved [4, 6, 17, 24, 26]. It is important to note 

that the volume of intersection is an extension of the spring-dashpot model as will be 

shown in this work. 

9 
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The weaknesses of the spring-dashpot model, and hence the volume of interference 

model, are: a) the discontinuous contact forces at impact, b) the possible exhibition 

of tensile forces when contacting objects move away from each other and c) the lack 

of a coefficient of restitution that is independent of velocity [17]. 

These misgivings can most likely be solved by: a) using fine time steps during 

collisions (or more efficient integrators) b) setting the contact force to be 0 when it is 

in tension and c) using a coefficient of restitution model that is not solely based on 

velocity. 

Calculating the volume of intersection, being the most important part of this 

model, can be computationally intensive. The model's useability is affected by how 

fast the volume can be calculated or approximated. In [26], the approximated in­

terference volume is calculated as the contact patch area times the interpenetration 

distance. In [6], a geometrical shape factor was included in the formulation to more 

accurately approximate the interference volume. Finally, [4] and [17] use duality 

transformations and convex hull approximations to calculate the interference volume. 

Unfortunately, these methods are limited to intersecting convex polyhedral objects. 

In regards to the field of computer graphics, where engineering accuracy is not 

necessarily required, a different breed of geometrically-based contact models have 

been used. In [27], penetration distances of vertices of one object to faces of the other 

are used to determine the contact forces [28, 29]. 

Frict ion Models 

Friction models can be broken down into two general groups: static models and 

dynamic models [30]. Notable static friction models include the classical models like 

Karnopp's model and Armstrong's model. 

10 
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The classical models are a group of models that each take into consideration a 

specific behaviour of friction. For example, the first is the Coulomb friction model 

which states that the friction force is equal to the normal force times a friction factor. 

The viscous friction model, extends the Coulomb model by saying that, depending on 

the state of lubrication at the contact interface, the friction force is linearly related 

to the velocity. Many such models have attempted to also address stiction as well as 

the so-called Stribeck effect1 [30]. 

The Karnopp model was introduced to deal with issues of zero velocities detection 

and stick/slip transition by using a dead zone for zero velocities [30]. That is, if the 

velocity is below a certain tolerance level, the object is regarded to be in a zero-velocity 

state. 

Armstrong [31] extended the classical method to account for the time dependencies 

of stiction and the Stribeck effect. However, this method neglects handling pre-sliding 

displacements [30]. 

Static models only consider the current state of friction therefore neglecting some 

aspects of friction that are time dependant. Dynamic models have a memory of 

the state of friction from the previous time step. The first such model is the Dahl 

model [30] which borrows from the stress-strain curve from solid mechanics. Unfor­

tunately, it neglects the Stribeck effect as well as stiction [30]. The Stribeck effect 

was taken into account in the Bliman/Sorine model though it was not without its 

xThe Stribeck velocity is the velocity at which the friction is in 37% transition from sticking to 

sliding. It is the characteristic drop in friction at low increasing velocities that occurs during the 

transition from boundary lubrication to full fluid lubrication. It was first observed by R. Stribeck 

in 1902 [30]. The Stribeck curve is defined as friction force as a function of velocity for constant 

velocities. 

11 
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flaws [30, 32], 

The bristle model [33], which tries to model the deflection and snapping of asperi­

ties at the contact interface, captures some interesting phenomena of friction but it is 

not very efficient with a complexity of 0(Nbristies). The authors of [33] also presented 

the reset integrator model which is a computationally efficient bristle model. 

Finally, [32] introduced the so-called LuGre model which models lubricated sur­

faces, the Stribeck effect, time-dependent break-away force, frictional lag as well as a 

constant time complexity. 

The LuGre model was extended by [26] to consider 3 dimensional vectorial friction 

forces, and later in [34, 35, 36] accounted for both rolling and spinning friction. 

The effects of hydrodynamic and hydrostatic lubrication are usually negligible in 

low viscosity fluids such as air but could become rather important for higher viscosity 

fluids such as water and oils [37]. That is, when a fluid is squeezed in between two 

surfaces, the pressures can become high enough to maintain a separation between the 

surfaces and hence reduce the friction caused by asperity contact. 

The LuGre model takes hydrodynamic lubrication (see Figure 1.5) into account 

but hydrostatic squeeze films are not modelled. 

1.2.4 Other Simulations 

In [38], a knot-tying simulation was proposed using a bounding volume hierarchy 

which is used to achieve real-time collision detection. Unfortunately, the simplistic 

tether and contact models within [38] limit the method to simplistic dynamics simu­

lations. Another real-time tether dynamics model was developed by [39] for an ROV 

simulator, though because of its corporate potential, no in-depth details about the 

12 
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Friction force 

Mixed film Full-film 
lubrication 

Velocity 

Figure 1.5. Friction force versus displacement showing the change from sticking to 

sliding friction [1]. 
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methods are publicly available to the author's knowledge. 

The motivation for this work was first introduced in [40]. It covered detecting 

collisions between the tether and the environment but not tether self-contact. 

The tether can also be seen as a kinematic chain or an articulated model. For 

these, [41] presents a method of detecting self-collisions that uses bounding volumes 

and [15] follows a similar approach but extends the use of bounding volumes to the 

use of swept volumes which handles continuous collision detection. 

In [7], the authors discuss the use of stochastic methods, a family to which some 

optimisation algorithms belong, and mentions the use of temporal coherence to keep 

track of colliding regions in [42]. Also, in [43], the use of a stochastic method for 

finding self-collisions in strand-like structures is proposed. 

In [27], wire-like objects are simulated as an array of Cosserat rods2. They are 

approximated by axis-aligned bounding box hierarchies for collision detection which 

guarantees them detection of all collisions but can get computationally intensive in 

multi-collision situations. The forces were calculated on a penalty method similar to 

volume of intersection and penetration depth methods adapted from [28, 29]. 

1.3 The Physical Simulation and the Tether Model 

The tether model, described in [44] and in more detail in [45], is used in this work. 

The tether is modelled as an assembly of finite elements that are based on the twisted 

cubic spline geometry described in [46]. The finite element tether model uses a lumped 

mass approximation at each tether node. The mass and stiffness matrices of the 

2Cosserat rods are based on elastica theory, developed by Euler, which allows for very large scale 

elastic deflections of structures. 

14 
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model are derived from the continuum equations using a weighted residuals approach. 

The model also includes a complete accounting of the axial, bending and torsional 

mechanics. 

As discussed in [45], the lumped-mass approximation is synergistic with the use 

of twisted spline elements. This allows the use of a full cubic geometry description of 

the tether given only the node positions. However, a consequence of the approach is 

that external effects, including contact forces, must be discretisable into point loads 

applied at the node points. 

To resolve this issue, if a collision is detected in between existing nodes, a new 

node can be added at the contact point to impose forces accurately at the contact 

region. The model described in [45] includes a calculation of residual forces that can 

be used to gauge the necessity of adding new node points during a simulation. 

At the core of most realistic physical computer simulation is an integrator. Physi­

cal simulations normally require numerical methods to solve sets of differential equa­

tions defining the equations of motion derived for the objects being simulated [47]. 

Arguably the most well known such method could be Euler's method which is simply 

an application of Taylor's theorem with the order 2 [47]. Since Euler's method only 

considers the first and second derivatives of position, i.e., velocity and acceleration, 

a large amount of truncation error can occur. It is the lack of stability and accuracy 

that makes it a poor choice for most practical applications. To reduce their inherent 

error, the simulation time step is generally reduced to achieve a desired accuracy. 

However, this can greatly affect the computational time. 

As an alternative, most engineering applications resort to higher-order methods 

such as the well known Runge-Kutta methods. The integration method used in [44] 

is the Runge-Kutta 4/5. This method is simply the RK4 method [48] with a fifth 
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order term calculated which is considered to be the inherent error of RK4. This error 

is used to determine an appropriate step size. Such a method is an attempt to keep 

integration error low while minimising computational time [48]. 

1.4 Thesis Objectives 

The objective of this work, as described in section 1.1, is to develop efficient methods 

for detecting and resolving tether self-collisions in ROV tether simulations. It is also 

important that the methods in question are as accurate as possible. The objective 

then, is to develop methods to detect and resolve tether-self collisions while finding a 

proper balance in accuracy and efficiency. 

1.5 Thesis Overview 

In Chapter 1, this work is introduced and a review of the literature is provided. 

Chapter 2 then presents a continuous collision detection method. The use of a two-

stage optimisation method (discrete and continuous stages), for detecting tether self-

collisions, is discussed. To ensure detection of all collisions, an efficient method for 

detecting collisions missed between time steps is introduced using some simple vector 

manipulations. 

In Chapter 3, methods for determining the interference volume between two skew 

cylinders, as well as the contact surface area are presented. These are, in turn, used to 

calculate the normal and tangent contact forces. The volume of intersection method 

is shown to be a derivative of the Wrinkler elastic foundation model and compared 

against Hertzian theory of general contact. Friction is modelled to include effects 
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such as dwell-time stiction dynamics, stiction/sliction transitions, Stribeck effect, 

frictional lag and fluid or dry lubrication. Some numerical examples are presented to 

demonstrate the validity of the models and methods. 

In Chapter 4, conclusions are drawn as to the effectiveness and accuracy of this 

work as well as discuss some of the topics that should be researched further. 

Readers may refer to Appendix A for a simplified flow diagram of the contact 

dynamics and how its sub-components, described in this work, fit together. 
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Chapter 2 

Self-Contact Collision Detection of 

Strand-Like Objects 

Determining self-collisions is not necessary when dealing with rigid bodies as they 

cannot change their shapes in order to make self-contact. On the other hand, when 

dealing with flexible objects, such as ROV tethers, contacts with itself must be de­

termined and resolved. 

Fortunately, the nature of the tether model used here greatly simplifies the process 

of detecting collisions. Since the tether is considered to be circular in profile with con­

stant cross-sectional area over its entire length, it can be substituted by a spline with 

an associated cross-sectional radius. Hence, the minimum separation distance queries 

can be done on the spline rather than the tether surface which is then compensated 

for its inherent radius. 
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2.1 Finding the Minimum Separation Distance 

The minimum separation distance between two straight lines can be obtained by the 

length of the line segment perpendicular to both and intersecting both. This can be 

extended to the curved tether segments by saying that the line segments locally repre­

senting the minimum separation distances are always perpendicular to the gradients 

of the tether at each closest point on the tether x. Therefore, an approximate and 

simplistic way of detecting collisions in long flexible objects of circular cross-section 

would be to discretise the tether into a finite number of segments and determine the 

distances between all possible pairs of tether segments represented by their centre 

lines. Unfortunately, being an exhaustive method this would result in iV2 checks, 

where N is the number of segments, because of the fact that all possible segment 

pairs represent N x N distance queries (assuming a tether with N + 1 nodes). Using 

this method, contacts between two tether segments can be identified when the length 

of the minimum separation distance segments are less than the sum of the tether 

segment radii. 

As the number of sample points is increased to achieve higher simulation accuracy, 

the number of collision checks increases quadratically which can quickly become too 

large of a computational burden. To avoid this "JV-body" effect, the method proposed 

here tracks pairs of tether segments which are closest to each other (therefore in 

contact or near contact) and only performs contact checks on those. Only considering 

pairs for which a collision is imminent will save numerous collision checks therefore 

completely ignoring the vast majority of possible contact pairs [49, 50]. This is known 

1 At a point s along the tether, the gradient of the tether can be represented by a line tangent to 

the tether at point s. 
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as a spatial pruning strategy. If the velocities and accelerations of those minimum 

separation distance pairs is taken into consideration, it is possible to predict whether 

or not those pairs may be in contact in the next few time steps. This is known as a 

temporal pruning strategy [50]. 

To perform such pruning, the minimum separation distances between the tether 

and itself can be found by treating the problem as an optimisation problem. Two free 

moving points constrained to move along the tether are allowed to move in order to 

minimise the distance between them. This concept is similar to the local optimisation 

algorithm proposed in [22], which is based on the distance determination algorithm 

described in [18]. As opposed to having an infinite search space and a large number 

of constraints as in [18], the method in [22] uses a discrete search space and the 

optimisation problem is unconstrained. 

2.1.1 Step 1: Identifying the Closest Regions 

The algorithm proposed in [22], a multi-point search algorithm that has been later 

named MLSDist (multi local search for minimum separation distance) is used to 

roughly identify all of the minima. In MLSDist, a number of node pairs2 are ran­

domly selected from the tether nodes. Each random pair is locally optimised using 

a simple greedy hill-climbing method that moves each of the nodes in the pair to 

its neighbouring nodes with the goal of minimising the Euclidean distance between 

them [22]. 

2The tether is made up of nodes and spline segments. A node pair is a pair of nodes. An optimised 

node pair is the case where moving any one of the nodes in the pair to either of its neighbours does 

not reduce the distance between them. 
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Initial Node Pair 2 
Initial Node Pair 1 

^itial Node Pair 3 
* ^ W ^ \ 

Locally Optimised Node Pairs 2 and 3 

Locally Optimised Node Pair 1 

. Direction of best improvement 
^ (i.e., node displacement) 

Figure 2.1. Example of MLSDist with three different starting node pairs. 

After this first minimisation step, only a group of locally optimised node pairs is 

left (see Figure 2.1). The pairs with the separation distance under a certain threshold 

are said to be the pairs which are most likely to be close to a collision. This saves the 

simulation from performing many redundant calculations. 

The minimum separation distance between two portions of the tether is only useful 

when the pair of locally optimised nodes is not the same node as is the case for the 

optimised node pair 1 of Figure 2.1. 

The objective function that is being minimised here is the square of the Euclidean 

distance between two points P(s i ) and P(s2), where Si is the distance along the tether 

where point i is located. That is, the optimisation problem is 

mm d = (P( S l ) - P ( s 2 ) ) T (P ( S l ) - P(s2)) (2.1) 

s.t. sx + s2 (2.2) 

Note that d is the square of the Euclidean distance between points P(s i ) and P(s2) 

as the points that minimise d also minimise vd as the separation distance is always 
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positive. To calculate d, each point P(s;) can be broken down into its independent 

Cartesian components as P(s,) = [X(si),Y(si), Z(si)]T, for i = 1,2. Equations to 

determine X(si),Y(si) and Z(si) are the cubic spline equations described in [45], 

which are a function of the node location as well as the tether's curvature at each of 

those nodes. 

Fortunately, the solution space for this objective function (equation (2.1)) is two 

dimensional, that is, the minimum distance is dependent only on s\ and s2. Figure 2.2 

shows a case where the separation distance between a tether and itself is a function 

of S\ and s2 which results in a relatively simple 3D surface with several peaks and 

valleys. Note that, as expected, the surface shown in Figure 2.2 is symmetrical in 

s\ = S2 as exchanging the values of s\ and s2 in equation (2.1) results in the same 

value of d. Also note that d = 0 when S\ = s2 which is also expected as P(si) = P{s2) 

if S! = S2. 

The intended use of the distance and collision detection algorithm is for dynamic 

environments (i.e., ROV simulations) where the distance queries are performed at 

every time-step. For this reason and to achieve better computational efficiency in 

any future trials of MLSDist (e.g., the new time step), current optimal node pairs are 

tracked and used as some of the initial trial point pairs for MLSDist in the following 

time-steps. That is, those closest node pairs in time-step i are likely to remain near or 

at a minimum in time step i + 1 if the objects' geometry remains fairly similar. This 

is generally the case for high inertia or slow motion systems such as most underwater 

applications as well as for systems whose simulations allow for a high update rate. 

Once all closest node pairs are located, the algorithm is left with Nmin locally-

optimal node pairs. However, since the tether is discretised, MLSDist is only able 

to minimise the distance by picking between the nodes themselves. As a result, the 
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solution is only as accurate as the size of the segment lengths. 

2.1.2 Step 2: Determining the Exact Minimum Separation 

Distance 

To achieve a more accurate solution, the minimised node pairs are used on a second 

optimisation stage using the two cubic spline segments that lie on each side of the 

selected node pairs (see Figure 2.3). Taking advantage of the equations of the twisted 

cubic spline, analytical expressions that provide the gradient and Hessian information 

can be obtained as a function of 2 point locations along the tether: si and S2. The 

equations which dictate the position and orientation of the continuous tether between 

two nodes are: 

P(s) = P m - V i + C m " Va + Pm<£3 + C m 0 4 (2.3) 

where P m is the position vector in Cartesian coordinates of the adjacent node 

upstream of s, P m _ 1 is the position vector of the adjacent node downstream of s, 

Cm~l is the vector of curvature of the cubic spline of the adjacent node downstream 

of s, 0 is a shape function used to interpolate between the two nodes and Lu is the 

undeformed tether segment length between nodes m and m — 1. 

02 = \(<!>\-<i>i)Ll (2.5) 

h = ^ ~ (2.6) 

<t>4 = \(&-<l>z)Ll (2.7) 

Using these equations and equation 2.1, the first and second derivatives with 

respect to the positions s\ and S2 at s\ and S2 can be obtained in closed-form. These 
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Tether Segments 
to be subdivided 

Original solution 
found by MLSDist 

accurate 
solution 

Figure 2.3. The tether with a) minimum distances found, b) exact minimum found 

on the cubic spline segment. 

are: 

Vd 

V2d 

dd 
dsi 

dd 
ds2 

a2d 
dsf 
a2d 

ds2ds\ 

d2d 
ds\ds2 

d2d 
as2 _ 

(2.8) 

(2.9) 

where Vd and V2d represent the gradient vector and Hessian matrix, respectively, 

of the square of the Euclidean distance between the point pair (see equation (2.1) 

and refer to Appendix B for their derivations). Having this information in closed-

form allows the use of some fast-converging continuous optimisation methods such 

as Newton's method [51]. The objective function is not necessarily positive definite 

throughout the search space as is required by Newton's method which uses a quadratic 

approximation of the non-linear solution space. However, with a few modifications 

to Newton's method, these problems can be overcome3 [51]. 

Due to the cubic spline representation of the tether and by maintaining segment 

lengths less than 2TT times the minimum possible radius of curvature of a simulated 

3Please see [51] for more explanations of modifications and algorithms. 

25 



www.manaraa.com

tether, which is a tether's standard specification, an assumption can be made that 

there is a maximum of nine separation distance local minima between the tether 

segments neighbouring a node pair (Figure 2.4a). Finding all 9 possible local minima 

can be guaranteed by using the nine initial trial pairs in figure 2.4b. 

Tether Segments 1 

9 Minima Found 

Tether Segments 2 

ius of Curvature of the Tether 

Tether Segments 1 
9 Initial Minimum Distance 
Pairs to be minimised 

Tether Segments 2 

b) 
Figure 2.4. a) Nine minimum separation distance pairs, b) Initial pairs prior to 

being minimised. 

Running this local optimisation the optional 9 neighbouring-node pairs of all pairs 

returned by MLSdist results in a list of point pairs that are closest to each other. Once 

found, they can be used to determine whether or not a collision is occurring or has 

occurred. 
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T 

A. 

Figure 2.5. A collision that is detected by verifying if the separation distance is less 

than r\ + r^-

2.2 Defining Collisions 

The minimum separation distance algorithms described in the previous section pro­

vides the ROV operators with an idea of possible tether entanglements and most 

importantly, the methods serve as a precursor to detecting collisions. In a static 

sense, the existence of collisions can be determined simply by continuously determin­

ing the separation distance between the tether centre-lines. That is, if the minimum 

separation distance between tether centre-lines is less than the sum of the radii of the 

tether segments, then, the tether is said to be in a self-collision situation (Figure 2.5). 

However, during a simulated ROV maneuver the tether segments could move at 

a. velocity such that the tether segments will completely pass through one another 

during a time step interval, see Figure 2.6. Therefore, the simple static algorithm is 

not sufficient for collision detection in dynamic environments. 

To detect collisions in dynamic environments, it is necessary to take into account 

f Separation 
distance 

i L 
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cylinder 2 at 
time step i and i + 1 

cylinder 1 at 
time step i 

cylinder 1 at 
time step i + 1 

Figure 2.6. Two cylinder segments crossing each other between time steps. 

where the segments were in the previous time step and determine whether a collision 

occurred while transiting between consecutive time steps. To overcome this issue, the 

closest node pairs are tracked from frame to frame and checked for such inter-frame 

collisions. 

Using the position of the first point in the point pair (i.e., P(s i ) ) in time steps 

i and i + 1 relative to the second node on the pair (i.e., P(s 2)) , a difference vector 

is found between the current and last frames (see Figure 2.7a). To avoid collision 

between time steps, a minimum angle /3min is needed between the relative position 

vector P(si)i — P(s2)i and the relative displacement vector (P(si)i+i — P(s2)i+i) — 

(P(si)i — P(s2)i)- The minimum angle (5min is calculated as: 

r\ + r2 
Pr, sin (2.10) 

IPO^-P^I, 
where r\, is the radius of the tether at Sj. Since in self-collision situations the tether 

is considered to have constant cross-section, r\ = r2 = r, and thus, equation 2.11 

becomes: 
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P(si) P{si)iyi+i P{si)i 

P(si)i+i 

Figure 2.7. a) Defining (5min to determine if a collision has occurred between time 

steps i and i + 1. b) Defining (3 and Pstart to determine if a collision has occurred 

between time steps i and i + 1. 

Pn sin 
2r 

(2.11) 
| P ( S l ) t - P ( s 2 ) , | , 

To determine possible contact, the actual angle j3 between the relative displace­

ment of point P(s i ) between frames i and z + 1 and the shortest distance vector needs 

to be calculated. That is, 

(3 = cos l : p ( s i ) i - p ( 5 1 ) i + 1 f ( p ( S l ) i - p ( s 2 ) i ) 
(2.12) 

| P ( s i ) i - P ( s 1 ) i + 1 | | P ( s i ) i - P ( s 2 ) i 

where |*| denotes the Euclidean norm of *. 

If the actual cone half-angle /? (Figure 2.7b) is greater than /?™n, then no collision 

is said to have occurred between frames i and i + 1. This would mean that P (s i ) 

is moving relative to P(s2) at an angle greater than the minimum angle required to 

initiate a collision (given a large enough travel distance). 

If, however, /3 is less than (3min, then a transitory collision has possibly happened. 

Solving the following vector equations for c will determine this: 

(P ( S l ) i + 1 - P(s 2 ) i + i ) - (P(si)i - P(s2)i) 
( P ( s i ) i - P ( s 2 ) i ) + c 

| (P ( S l ) i + 1 - P(s 2 ) i + i ) - (P(si) , - P( S 2 ) , ) | 

29 
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P ( 5 l ) i + 1 

Figure 2.8. Case where the time step was too large and the tether travelled too far 

to be considered accurate. The angle P can be used to judge the accuracy of the 

collision. 

and 

\Pstart-P(s2)i\=r1+r2 (2.14) 

where Pstart is the position of P(s i ) at the start of a collision on a travel path of 

angle (3. Solving the system of equations shown in equation (2.13) for c provides two 

possible solutions, one corresponding to P s t a r t and the other to Pend (see Figure 2.7b). 

A collision is said to have occurred if |P(s i ) i + i — P(s i ) j | > min(c) considering only 

positive values of c. This method is simple and effective at detecting collisions in 

between frames for cylindrical objects. 

There is a problem that shows up when there is no collision in frame i but one in 

frame % + 1, and the time step or relative displacements are so large that the tether 

has penetrated too far to provide a force in a proper direction as seen in Figure 2.8. 

This is easily mitigated by ensuring that the following equation is satisfied: 

| P ( s 1 ) l + 1 - P ( s 1 ) i | < 

where Pfineness is a user-defined scalar used to inhibit large interpenetration changes. 

It is recommended that Pfineness be chosen to be larger than 5-6. 

It is possible that in between time steps, the tether centre axes will cross each other 
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JS Minimum Separation Distance 

N 

Figure 2.9. The minimum separation distance between two skewed lines and the 

line normal to both. 

instantly nipping the contact force's direction. Using some simple vector manipula­

tion, one can determine whether or not the two centre lines have crossed. Representing 

the first segment as vector Vj and the second segment as vector V2, one can find a 

vector N perpendicular to both by using the vector cross-product (see Figure 2.9): 

N = Vi x V 2 . 

This vector and the line that represents the minimum separation distance will 

always be parallel to each other as they are always perpendicular to the vectors Vi 

and V2. Because the direction of the minimum separation distance is dependant on 

the relative positions of Vj and V2 and N is not, the vectors V\ and V2 will have 

have crossed if the dot product of N and the minimum separation distance vector 

changes from positive to negative or vice-versa. 

A problem arises if the angle between Vi and V 2 changes from positive to negative 

or vice-versa when the cross-product also changes polarity. To overcome this issue 

one must insure that N did not inverse. If the dot product of N from the time step 

i against that of time step i — 1 returns a negative value, N has changed direction 

and this must be taken into account while determining if the minimum separation 
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distance has also changed. 

If it is found that a collision has occurred in between time steps rather than at a 

current time step or if their centre lines have crossed, the simulation is also to ignore 

the new tether position, reduce the time step and retake the current iteration again 

(see Figure 2.10 for a flow diagram describing this process visually). 

In hopes of achieving a higher simulation stability, it is recommended that the 

time step be set proportional to the tether interpenetration during collisions in hopes 

of achieving a stability in the contact/environment/internal force balance and prevent 

centre-crossing or large impulses. 

2.3 Numerical Examples 

Here, three numerical examples are given where the first two are static tests and the 

third is a dynamic one. First, to test the algorithm's capabilities at finding multiple 

local minima, a special case is tested. When the tether is parallel with itself, as is 

the case with a perfectly spiralled tether, there exists an infinite number of minima. 

Figure 2.11 shows a perfectly spiral tether with all minima found. There is only a 

discrete number of minima found because only N minimum pairs was generated and 

Nmin — Q pairs were returned where q is the number of invalid pairs formed (i.e., 

the pair of nodes are identical). In most cases, however, there exists a finite number 

of minima which are all effectively found as can be seen in the snake shaped tether 

shown in Figure 2.12. 

The results of a dynamic example are shown in Figures 2.13 to 2.17 where a 

tether is being tied into a knot while a weight is attached to the free end of the tether 

to tighten the knot. At the instant shown in Figure 2.13, there are four current 
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Figure 2.10. Continuous collision detection flow diagram 
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Figure 2.11. A spiral tether showing all minima found. 

Figure 2.12. A snake-shaped tether showing all minima found. 
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Figure 2.13. A tether forming a knot showing 4 minima. 

' " - • • - . / 

Figure 2.14. Close-up of the shortest minimum (right) prior to the collision. 

separation distance minima, two of which, located at the top centre of the scene, are 

hardly visible due to scale. An imminent collision is evident at such location as can 

be seen in a close-up of the two shortest minima (Figure 2.14). 

When the minimum separation distance becomes equal to rx + r^ (or zero if the 

radii are accounted for), a collision occurs and a simulated force proportional to how 

much the cylinders have interpenetrated and normal to both tether axes is provided 

to the tether at the collision point and shown as the dark lines in Figure 2.15. 

As seen in Figure 2.16, the tether successfully reacts to the force and remains 

separated. This is better seen in Figure 2.17 where the separation distance reaches 
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Figure 2.15. The shortest minimum (right) during the collision. The two added 

dark lines represent the forces being applied at the contact points. 

Figure 2.16. The shortest minimum (right) after the collision. 
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 

Figure 2.17. The minimum separation distances of the three shortest minima. The 

shortest of which showing a collision at time ~ 0.21 seconds. Distances have been 

adjusted to account for the tether radius. 

0 m (actually a little less than 0 as intersection occurs). During the collision period, 

forces are applied on each of the tether segments and the tether "bounces" in reaction 

bringing the tether back to an equilibrium condition. 
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Chapter 3 

Contact Dynamics 

Once a collision has been detected, it is imperative the collision forces be resolved. 

If a momentum conservation model was used, only a change of their instantaneous 

velocity vectors would be necessary. This also holds for all other contact models 

except the velocity vectors are generally changed in a more indirect manner, like 

using a time-varying force to change the velocity. This Chapter describes the use of 

the volume of intersection to determine the normal contact force. Once the normal 

force is obtained, it is used in the LuGre friction model [32] to find the tangential 

friction forces involved with the collision. 

3.1 Interference Geometry Between Two straight 

Skew Cylinders 

Finding the volume of intersection between two cylinders can be solved analytically. 

There are four independent variables which influence the volume of intersection of two 

intersecting cylinders (Figure 3.1): the radii of both cylinders (ri and r2) , the angle a 
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Interference Volume Cylinder 2 C "* I 

a) b) 

Figure 3.1. Two intersecting cylinders where a) shows a, the angle between them 

and b) shows the minimum separation distance d* as well as 4>max and xmax. 

between their centre lines which provides their relative orientation (see Figure. 3.1a), 

as well as their separation distance d* (minimum separation distance between their 

centre lines). 

Using this information, the problem can be formulated as a volume integral. Look­

ing along the axis of cylinder 1 as in Figure 3.1b, certain geometrical information 

about the volume of intersection can be determined. The angle </>max is the angle 

between the common perpendicular to the two centre lines and the outer edge of con-
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tact. The distance from the common perpendicular to the edge of contact is denoted 

by xmax and can be defined as xmax = r\ sin (cf>me,x). The distance xmax is used as an 

integration bound for cylinder 1 (see Figure 3.1b). 

Due to the symmetry of the contact region, the volume integral can be formulated 

as: 
f l m a i 

V = 2 A(x)dx, (3.1) 
Jo 

where V is the interference volume, A(x) is the area of the slice of the volume of 

intersection at x and dx is the x differential. The area A{x) of a slice of the volume 

taken at a distance x from the common perpendicular is represented in Figure 3.2. 

Before analysing the area A(x), the following dimensions should be known (see Figure 

3.3): 

d = c T - n , (3.2) 

ci = r2-cu (3.3) 

d\ = r1 - c'l=ri-r2 + Ci=r1 - r2 + d* - rx = d* - r2, (3.4) 

<p = tan_1(a?/di), (3.5) 

h = \]x2 + d\, (3.6) 

c2 = n - h, (3.7) 

4 = sJr\-{hsm4>Y-du (3.8) 

where equation (3.8) is a rearranged version of pythagoras' theorem where the right 

angled triangle is defined as: the hypothenuse (n ) , the opposite side (hsvo.4>) and the 

adjacent side is (c'2 + d^). With <̂  in hand, the area A{x) can be defined as: 

A(x) = 2 (r2cos6-d2)dz, (3.9) 
Jo 
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x = ro sin(0) 
y = r2 cos (9^ 

dx = r2cos(0)9G 
{x,y) 

Figure 3.2. Cylinder cut at an angle where a) Section A-A shows an elliptical 

profile and b) geometrical information about an ellipse. 

Figure 3.3. Some important geometrical information in contact region (mainly c^). 

where zmax = r2sin(#m a x), 6*max = cos_ 1(d2 /r2) , ^2 = r2 — < ,̂ and r2 and r2 are the 

minor and major semi-axes of an ellipse (see Figure 3.4). When angle a is increased, 

the eccentricity of the profile of B-B of cylinder 2 becomes more pronounced. 

Because the integration of the area is about z, the angle 8 of the ellipse can be 

found for a specific z position as: 

^ = sin^1(z/r^). (3.10) 

Any integration method could be used to solve for A(x) in equation (3.9) and V in 
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Figure 3.4. Section C-C at a distance x from the common perpendicular. 

equation (3.1), however, for computational efficiency, a 5-point Gaussian quadrature 

method is recommended as there is minimal loss of accuracy for the large performance 

gain over other numerical integration methods. 

3.2 Contact Surface Area Between Two Interfer­

ing Cylinders 

The projection of the intersection volume between two cylinders onto a plane whose 

normal is perpendicular to both is always elliptical with only two exceptions: when the 

angle a between them is 90° or 0°, where their projections are circular and rectangular, 

respectively. 

The major axis of the ellipse formed by the projection of the intersection volume 

is always located half-way between the acute angle a formed by the two intersecting 

cylinders (see Figure 3.8). The general equation for such an ellipse is as follows: 

2 2 
ellipse , c/ellipse -, M i i \ 

az b2 
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Boundary of Projected Contact Area 
% s » % / __ A ' ' "* axis of Cylinder 2 

axis of Cylinder 1 

•^ellipse 

Figure 3.5. Finding Px in terms of (xeliipse,yeuipse) using xmax and a 

where a and b are the major and minor semi-axes, respectively, and xeuipse and yeuipse 

are the x and y coordinates of a point on the ellipse in the ellipse's frame (where 

the x axis is aligned with the major axis). Knowing any 3 amongst a,b,xeiupse or 

yellipse allows to solve for the fourth parameter using equation (3.11). Unfortunately, 

analytically, only two of these can be determined. That is, the x and y coordinates 

of a point on the ellipse can be determined from the geometrical properties shown 

in Section 3.1. This point is defined using one of the boundaries of the intersection 

volume. 

As seen in Figure 3.5, xmax represents the distance from the centre of intersection 

to the outer edge of integration located in-line with the axis of cylinder two. In order 

to define the xempse and yeiuPse coordinates, x'max is projected onto a line perpendicular 

to cylinder 1, xmax (Figure 3.5): 

I - "max 
T — 
•"max sin a 

(3.12) 
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ylinder Axes 

-7 ^ V£_N 

-y (W ^ sine* 
yellipse U • ^ellipse 

Figure 3.6. Finding the magnitude of the major axis a using 2max(x) and x. 

With x'max in hand, the coordinates of Px on the ellipse's frame can be defined by 

projecting x'max onto the major and minor axes as: 

Oi 
Xellipse(Pl) = 2 4 a x C O S ^ , ( 3 - 1 3 ) 

and 

VellipseiPl) = £ ' m a x s i n ^ , ( 3 . 1 4 ) 

where xeuipse(Pi) and yeiUpse(Pi) are the x and y coordinates relative to the ellipse's 

frame of point Pi as seen in Figure 3.5 assuming the centre of the ellipse is (0,0). 

Variable a, the length of the major semi-axis, though not found analytically can 

be found by numerical means. Take note that a different zmax is obtained at each 

different slice of volume at x (Figure 3.3). For each x, zmax is found and compared 

with -^- for equality. That is, when zmax for a certain x is equal to -^, one can 

say that the third side of a triangle defined by zmax(x) and -^-^ is the major axis of 

the triangle. Therefore, using the cosine law, one can easily determine the length of 

a (see Figure 3.6). This is true because the side of the triangle that represents zmax is 

parallel to the axis of cylinder 1 which makes the triangle an isosceles triangle whose 
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-̂*̂  ŝ. 
( \ 

Figure 3.7. A comparison of two intersecting: a) undeformed cylinders (dashed 

lines) b) deformed by contact pressure (solid lines). 

base angles are ~. With xeiiiPse(Pi), yeiuPse(Pi) and a, the minor axis b is easily found 

using equation (3.11). The area of an ellipse, knowing a and b, is easily found as nab. 

Though this method indeed provides the projected area of the volume of interfer­

ence, it is only a crude approximation of the actual contact patch area. Figure 3.7 

shows the differences between the actual contact patch and the intersection geome­

try. A better approximation of this contact patch area may be to determine it by 

calculating the area of a slice of the interference geometry at plane A located directly 

in the middle (see Figure 3.8a). That is, since for tether self-collision both contacting 

segments are made of the same material and have similar geometry, both objects will 

deform equally, and hence meet half way at A (Figure 3.8b). A fast way of estimating 

the area of A is by separating the cylinders by ^ and finding the elliptical area of the 

projection of its interference geometry as described earlier in this section. 
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A 

a) b) 

Figure 3.8. Two intersecting cylinders showing a) their undeformed state and the 

plane A where the surface would meet under deformation and b) the deformed 

cylinders after deformation. 

3.3 Determining the Normal Contact Force 

When two objects come into contact, a normal pressure field, as well as a tangential 

shear stress field, is formed between them. This pressure is caused by the elastic 

properties of the two bodies undergoing deformation during contact like in Figure 

3.8b. Integrating this pressure over the area can provide the total normal force 

keeping them apart: 

fn = Jada. (3.15) 

Unfortunately, during a computer simulation, the pressures are just as unknown 

as the actual contact forces. However, the pressures can be obtained through the 

approximations of the deformations. Thus, the normal force can be approximated 

based on the elastic properties of the material and the contact geometry as: 

a = Ee, (3.16) 

5r 
e = - , (3.17) 

r 

dV = 5rda, (3.18) 

V = f dV = f 5rda. (3.19) 
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where a is the normal stress/pressure, E is Young's modulus, e is the strain, dr is the 

change in radius of a point on the contact patch surface, r is the undeformed radius, 

da is the differential area and dV is the differential volume (see Figure 3.9a). The 

volume V found using the method described in Section 3.1 approximates the actual 

deformation of both cylinders. That is, the volume V represents the deformation 

of cylinder 1 caused by a force applied to cylinder 1 plus the deformation caused by 

a force applied to cylinder 2. Therefore, to find the force from deformation on one 

cylinder, half of the interference volume is used assuming that both cylinders have 

the same elastic properties. That is, 

V 
V = - . (3.20) 

Therefore, the total normal force on one cylinder fn can be expressed as, 

EV 
fn = • 3.21 

r 

This method for obtaining the normal contact forces has been previously presented 

in [4, 17, 26] and is technically the Wrinkler elastic foundation model. To model de­

formation rate effects, the rate of change of the volume is taken into account with 

an associated damping coefficient which then becomes a spring-dashpot model. Each 

differential volume is modelled as a spring and dashpot (Figure 3.9b) that is said to 

have been compressed down to the contact surface in the middle of the intersection 

geometry. In this case, the spring coefficient in equation (3.21) is the Young's Mod­

ulus E of the deforming object. Taking damping into consideration, equation (3.21) 

becomes: 
EV dV 

/„ = + B - . 3.22 
r at 
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Figure 3.9. a) The volume of intersection showing the differential volumes, b) One 

of the differential volumes showing its spring dashpot representation. 

where ^ is the rate of change of the volume with respect to time, and B is the 

damping factor. 

In order to verify the accuracy of this force, it was compared with the Hertzian 

model of general contact1 [25]. It is compared to the Hertzian contact model due to 

its wide acceptance by the scientific community. Here, the force provided through 

the volume of interference is used in the Hertzian model (refer to Appendix C) which 

can also provide the major and minor axes of the elliptical contact patch. Through 

a comparison of the contact patch area from the volumetric model and the Hertzian 

model2, the accuracy of the volumetric model is determined. 

Figure 3.10 shows the percentage differences between the contact patch areas of 

both methods. The model described here adheres to the Hertzian contact model at 

Her tz ian contact theory [25, 1] requires the geometry of the contact patch as input in order to 

provide a force. The method of describing the contact patch area, described using Figure 3.6, has a 

greater complexity than calculating the volume of intersection. 

2Please note that Hertzian contact theory was rejected as a potential contact model for the 

contact of tethers because Hertzian theory assumes quadratic surfaces, but most of the time, the 

tether's surface shape is cubic. In addition to this, Hertzian contact theory does not directly consider 

damping. 

48 



www.manaraa.com

o 

0 

-5 

-10 
CD 
O 

c 
CD 

T J 
*o 

-20 

-25 

-30 

s° 

x = 90° 

x = 60° 

x = 30° 

«* «« 
N. ' ^ > S 

N 
V V. ' ' X 

s 
s 

N -N, 

V 

• 

\ •Xv 
v X 

N 

! 

< -X 
v -X-

S -X. 
\ ' X 

V '-X 
\ .X 

S X 
\ 

\ 
\ 

\ -X \ x 
\ 

\ 

I 

\ 

10 15 20 25 30 35 
Penetration as percentage of cylinder radius 

40 45 50 

Figure 3.10. Percentage difference between contact patch area of the Hertzian 

model and the contact patch area from the interference geometry. 
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almost any angle to within +/— 5% as long as penetration depth is maintained under 

25% of the tether's radius. However promising this seems, all that this means is that 

the volume of interference model adheres to the Hertzian model, it is therefore only as 

accurate as the Hertzian model. Since the Hertzian model assumes small deflections 

relative to the contacting surfaces, it is doubtful that penetrations as high as 25% of 

the radius would provide realistic results. 

It should be noted that a maximum volume of interference exists when the min­

imum separation distance between the tether centres are zero. The algorithms here 

will only calculate the volume of intersection up to a separation distance of the great­

est radius in the cylinder pair. At this point, the contact forces should tend to infinite 

as the centre line separation distance nears 0. An expression resembling c^°!} is pro­

posed to be used to scale the force from the volume of intersection at the cut-off 

point where d^ tojy is the volume of intersection where the user decides the volume 

of intersection method is no longer accurate. 

3.4 Determining the Tangential Contact Forces 

Anytime there is an object in contact with another or with itself, friction could be 

said to occur. The modelling of frictional forces is not an easy task as there is a 

multitude of factors that influences the resulting forces [30]. The material properties, 

the normal forces pushing the two surfaces together, surface quality, the existence of 

debris, fluids at the contact interface, temperature, and relative velocities all have an 

influence on friction. Some of the phenomena attributed to contact cases with friction 

that a model must try to capture in order to maintain fidelity are: the Stribeck effect, 

static friction/break away force, frictional lag (dwell time) and viscous friction [30]. 
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That being said, friction models can be categorised into two types: static models 

and dynamic models. Besides computer simulations, such friction models are used 

in controller compensation in order to predict the friction in moving parts and com­

pensate to maintain fidelity. In this field, the most widely used friction models are 

static models such as the classical models like the Coulomb model and the Karnopp 

model [30]. 

Among the dynamic friction models, the most significant is arguably the bristle 

model [33] which captures stick/slip behaviour and the random nature of friction. 

However interesting this model is, it is not efficient enough to be used in real-time 

applications [30, 33] and ignores other important phenomena. 

The LuGre model [32], on the other hand, is a relatively new model that covers 

most phenomena of friction. This computationally efficient model (also employed 

in [26]), calculates the friction force based on bristle deflections zhr and deflection 

rates zhr. The original bristle model [33] loses efficiency in the fact that it takes 

account of N bristles as well as each of their deflections and stick/slip states. The 

LuGre model amasses the bristles into one and keeps track of the stick/slip states 

with an average bristle deflection. 

In [26], the LuGre model was extended to transform the unidimensional bristle 

deflections z^ to a tridimensional vectorial form z*"". As outlined in [26], the friction 

force caused by the deflection of the bristles is: 

f6r = a0z
br + a1z

br, (3.23) 

where OQ and CTI are the bristle stiffness and damping coefficients, respectively. Every 

contact has its own bristle deflection state z67-, where |z6r | = 0 when a contact is 

initiated. The rate of change of the bristle deflection zbr can be said to have two 
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different behaviours, z^ for sticking and z^[ for sliding. A sticking state function 

sst (which cycles between 0 and 1) is introduced to determine the current state of 

friction: 

zbr = sstz* + ( l - S r t ) z £ , (3.24) 

with 
(vrvt) 

sst = e <«if) , (3.25) 

where vs is the Stribeck velocity3 and V t is the tangential velocity vector. When sst 

is 1, the friction surfaces are under a full sticking state. Conversely when sst is 0, the 

surfaces are in a full sliding state. When undergoing full sticking, it is said that the 

bristles of one surface are attached to the bristles on the other surface and therefore 

their deflection rate is identical to their relative tangential velocity: 

z% = V t . (3.26) 

Coulomb friction, a friction model where the friction force between two sliding bodies 

is defined as directly proportional to the magnitude of the normal force fn as /ic/„ is 

defined here in vector form as: 

fc = Vcfndir€(Vt,ve), (3.27) 

where v£ is a numerical tolerance for the velocity and 

V4 . 

dire(Vt,ve) = < 

IV, 

V.AlV.I i /IV, 
ve \ 2 ve 2 \ ve 

|V t | > = ve 

(3.28) 

|V t | < ve 

3The Stribeck velocity, is the velocity at which only 37% of the bristles will be in a sticking 

condition. 
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where as a guideline ve is generally no more than one tenth of vs [26]. 

Assuming that under sliding conditions the friction force, i.e., the force of the 

bristles, is the Coulomb friction force, equation (3.23) is set equal to equation (3.27). 

Solving for z where zbr ~ z^, it is possible to obtain z^[ as: 

z * = — fc - ^z
br. (3.29) 

Combining equations (3.24), (3.26) and (3.29) gives the following equation for z: 

±br = sstVt + (1 - sst) f—fc - ^z*"-) . (3.30) 

The maximum friction force for a given fn is generally dictated by the friction 

coefficient of sticking /JS where the force of friction is /j,sfn. However, when sticking is 

first initiated, the force required to dislodge the objects is generally not immediately 

Hsfn [30]. This effect is known as dwell-time dependency [26]. To model this dwell 

time effect, another state variable, Sdw, is introduced which again cycles between 0 

and 1 and is set to 0 at the onset of contact. The rate of change of Sdw, Sdw is defined 

as: 

^r—\sst ~~ Sdw)] Sst ~ Sdw >— 0, 
' dxu 

(3.31) 

—-{Sst — Sdw)', sst ~ Sdw < 0, 
'or 

where Tdw is the dwell-time time constant and r^ is the bristle dynamics time constant 

(where T\,T — ̂ - ) . The magnitude of the maximum stiction force is defined as: 

Sdu 

(TO ' 

fmax = fn(lJ-c + (Us ~ Vc)Sdw)- (3 .32) 

The tangential friction force ft is then defined as follows: 

ft = -(sat(fbr, fmax) + a2Vt), (3.33) 
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Friction force 

Sticking 

Displacement 

Figure 3.11. Friction force versus displacement showing the change from sticking to 

sliding friction. 

where o^ is the viscous damping friction coefficient to model lubrication and the 

saturation function sa£(fj,r, fmax) is defined as: 

Su-£^Ifrr, Jmax) 
I Ifir I "̂  Jn 

(3.34) 
f Jin.- If. I •> f 
Jmax.f .1 \Lbr\ -^ Jn 

lri>r| 

which completes the LuGre model as described be [26]. 

3.4.1 Measuring a0, au a2, vs, JJLS, fic, and rdw 

In order to measure the variables which affect the friction force of the LuGre model; 00, 

Ci, &2, vs, ns, fic, and Tdw, one simply needs to generate some force vs. displacement 

and force vs. velocity data (see Figures 3.11 and 3.12). During sticking, the friction 

force is equal to force from the bristle deflection. Since the bristles are sticking to each 

other, the bristle deflection is equal to half the relative displacement of the contacting 
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Figure 3.12. Friction force versus velocity showing the Stribeck effect. 

surfaces, hence <7o = jf, see Figure 3.13. Also during sticking, the bristle deflection 

rate, z6r, is equal to the relative tangential velocities of the two surfaces, o~i = *v~z r<7°, 

see Figure 3.12. 

The sticking friction coefficient, /is, is the relationship between the normal force 

and the friction force, i.e., /j,s = fd/fn- During pure sliding friction, either asperities 

which are breaking off or a fluid at the interface lubricates the contact region. The 

faster the relative tangential motion, the higher the drag forces become. The viscous 

damping coefficient, 02, is simply the slope of the force-velocity curve during full 

sliding (Figure 3.12). 

Because the viscous damping force component is 0 when the velocity is 0, the 

entire sliding friction force is caused by /j,cfn- Therefore, /j.cfn is the force at which 

a line asymptotic to the force velocity curve at high velocities, whose slope is o~2, 

intercepts the force axis, see Figure 3.12. The dwell time constant T<IW is simply the 

55 



www.manaraa.com

Friction Force 

onset of sticking friction 

* Time 

Figure 3.13. The break-away friction force at the initiation of sticking as a function 

of time. 

time it takes for the sticking friction to reach its full sticking force, measured from 

force-time data of a sticking friction situation (Figure 3.13). 

3.5 Numerical Example 

For a detailed numerical example of the LuGre model undergoing stick/slip transitions 

please see [26, 30], or [32]. Here, the numerical example of a collision that was first 

presented in Chapter 2 is revisited using the contact models described here. This 

contact model is incorporated into the tether model described in [44] and is provided 

the same initial conditions as in Chapter 2. It should be noted that in Chapter 2, the 

collision is almost instantaneous due to the large modulus of elasticity used in that 

example. Here, a modulus of elasticity E of 0.02 GPa, which is closer to low density 

polyethelene, was used along with a damping factor B of 0.01 £[§. The friction model 
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used the following values: /xs = 0.15, y,c = 0.1, cr0 = 1 x l O 5 ^ ) , ^ = \ / l ^ (^ f ) , 

a2 = 0 . 1 ( f ) , vs = 0.001(f), rdw = 2(s"1) and ve = ^ ( * ) . 

Note that no physical tests were undertaken to obtain any of these contact model 

settings. The frictional model settings are the same as those used in the numerical 

example presented in [26]. Physical tests should be undertaken on real tethers to 

determine what all these model settings should be set to in order to provide an 

accurate model. Figure 3.14 shows the contact beginning close to 0.21 seconds and 

remaining in contact for much longer than the example in Chapter 2. Since the 

modulus of elasticity is lower, the tether allows more deformation. This provides 

for a sustained contact where friction is introduced. Because the relative velocities 

remain rather high, the friction force undergoes a mixture of Coulomb and viscous 

friction. This explains the almost linear relationship between the friction force and 

the normal force evident by comparing the first and third subfigures in Figure 3.14. 

The second plot in Figure 3.14 also shows a small reduction in relative tangential 

velocity which is caused by friction. 
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Figure 3.14. A tether self-collision showing the forces involved, tether penetration 

and their relative velocity. The thin solid lines represent the simulation with 

friction, the thick dashed lines represent the simulation with no friction, and the 

thin dashed lines are the % difference between the two. 
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Chapter 4 

Conclusions 

The problem of finding the minimum separation distances between different segments 

of a single tether was discussed. It was shown that detecting self-collision situations 

of tethers is well suited to local optimisation techniques due the separation distance 

function's near quadratic continuous features of its simple 2D solution space. 

A continuous collision detection method for slack, flexible cylindrical objects was 

presented to deal with tunneling and also to determine how accurate a reaction the 

collision force is going to provide. 

A method for determining the volume of interference between two skew cylinders 

was demonstrated. This volume is then used to model the forces involved in the con­

tact region. To compare this method against the Hertzian model of general contact, 

the corrected area of projection of the contact volume was calculated. It was then 

compared against the contact patch area of the Hertzian model given the same force 

provided by the volume of interference. It was shown that the volume of interference 

model corresponds fairly well with the Hertzian model provided the penetration depth 

remains within about 25% of the tether's radius. It should be noted that this con-
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elusion only means that the volume of intersection is only as accurate as the Herzian 

contact model for that penetration amount. 

The LuGre friction model [32] was employed as it takes into account many of the 

known phenomena of friction including viscous friction and retains computational 

efficiency. With the interference-volume-based spring-dashpot contact model and 

the LuGre friction model implemented in a lumped-mass tether model, a numerical 

example demonstrated the tether behaviour during a contact situation. The model 

is efficient, could be used in real-time applications, and has the potential to be quite 

accurate provided the appropriate material properties. 

4.1 Thesis Contributions 

The main conrtibutions of this work are: 

• Developed an efficient two-stage separation distance optimisation-based con­

tinuous collision detection method for use with continuous cubic spline based 

tethers. 

• Developed a method for determining the volume of interference between two 

straight skew cylinders. 

• Developed a method for determining the approximate contact patch area be­

tween two straight skew cylinders. 

• Showed that the volume of intersection method is comparable to the Hertzian 

theory of general contact. 
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• Showed a coherence between the volume of interference contact model and 

Hertzian contact model. 

• Demonstrated the volume of interference to be the Wrinkler elastic foundation 

model. 

• Discussed the LuGre model's inability to handle rotational friction. 

4.2 Future Work 

The following is a list of avenues that remain to be investigated which this work has 

spawned: 

• Compare the use of both two-stage optimisation and purely continuous optimi­

sation methods. 

• Extend volume of inteference method to include tether curvature. 

• Further develop the material tests and methods for obtaining material properties 

for use in the contact models. 

• Compare d* from Hertz' model of general contact against the volume on inter­

ference model's. 

• Validate contact dynamics model. 

• Implement some node management code: in the addition of nodes, keeping track 

of the ones generated for contact and deleting them during none CPU-intensive 

periods. Reuse added contact nodes by moving them instead of simply adding 

a extra one (twice the garbage). 
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• Investigate dynamically changing the number of minima tracked and tracking 

minima based on proximity rather than iVmiri smallest minima. 

• Investigate other Wrinkler elastic foundation model variations such as investi­

gating Mooney-Rivlin solid, hyper-elastic, and neo-Hookean models as rubber 

is considered not to obey Hooke's law. 

• Extend methods to general polygonal objects: The methods of finding the min­

imum separation distance can easily be extended to polygonal objects. Using 

MLSDist and a continuous optimisation (gradient based) and the UV coordi­

nates of polygons. 

• Develop method for calculating the volume of interference between general 

polygonal concave objects. There currently exists methods for determining the 

volume of intersection for convex objects only. One might need to use convex 

subdivision of concave objects. 

• Investigate the use of texture map information to map accurate surface details 

of very fine polygonal meshes onto rough polygonal meshes. For minimum 

separation distance code, the surface normal could easily be mapped. 
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Appendix A 

Algori thm Flow Diagrams 
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Figure A.l. Flow Diagram of the general simulation. 
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reduce time step 
and recalculate frame 

Figure A.2. Flow diagram of the Contact Dynamics Package. 
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Figure A.3. Flow diagram of how minima are found. 
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Appendix B 

The Minimum Separation Distance 

Gradient and Hessian Between 

Two Cubic Splines 

Ms) = "-^ (B.l) 

Ms) = \{<P\~M{Lu)2 (B.2) 

Ms) = ^ (B.3) 

Ms) = l((t>l-fo)(Lu)2 (B.4) 

X(s) = Xm"Vi + C r l<h + Xm</>3 + C ^ 4 (B.5) 

Y(s) = Y^-Vi + C ^ ^ + Y ^ s + C ^ (B.6) 

Z(s) = Zm~ Vi + C™- V2 + Zm03 + C™</>4 (B.7) 
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Appendix C 

Obtaining the Normal Contact 

Force through Hertz ' Theory of 

General Contact 

When two bodies with general curvature1 come into contact, Hertz' theory of general 

contact says that the contact patch is elliptical in shape and the pressure is distributed 

as a semi-ellipsoid. The equations that follow were taken from [1]. 

The total applied contact force can be formulated as a relationship to the maxi­

mum pressure, pmax in the distribution, which is located at the centre of the contact 

patch: 

2 
fn = ^abpmax (C.l) 

1 Hertz' Theory of General Contact assumes that all curvatures have an associated radius of 

curvature which defines the quadratic surface. 

76 



www.manaraa.com

a = 

b = 

mi = 

m2 = 

, 3J3F(mi + m2 

, 33F{m1 + m2 

M 4A 

\-v\ 

If however, the normal force is known along with the shape and material of the 

contacting surfaces, one can estimate the dimensions of the contact patch: 

(C.2) 

(C.3) 

(C.4) 

where a is the half-width of the major axis of the elliptical contact patch and b is 

it minor axis counterpart, ka and fc& can be found in Table (C.l), and i>i and Et are 

the Poisson's ratio and Young's modulus of the material of object i. A and B can be 

obtain using the following equations: 

2 \ R\ Ri i?2 R<i) 

B = ^ [ (Ki ) 2 + (K2)2 + 2(3?1)(SR2)COS(2a)]1 (C.7) 

®2 = w~w (c-9) 

/ t 2 K2 

4>HZ = c o s _ 1 ( f ) (C 1°) 
where Ri and R[ represent the maximum and minimum surface radii of curvatures 

for object 1, and a is the angle for orientation difference between Ri and /?2-

By rearranging either Equation (C.2) or (C.3), the load required to deform the 

tether as to form a contact patch of dimensions a and b can be obtained. 
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Table C.l. Factors for use in equations C.2 and C.3. 

<f>Hz 0 10 20 30 

ka oo 6.612 3.778 2.731 

kb 0 0.319 0.408 0.493 

40 50 60 70 80 90 

2.136 1.754 1.486 1.284 1.128 1 

0.567 0.641 0.717 0.802 0.893 1 
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